

High-dimensional node generation with variable density

Alex Vlasiuk

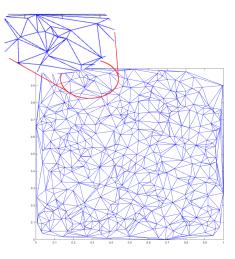
Fast Algorithms for Generating Static and Dynamically Changing Point Configurations ICERM March 2018 Joint work with N. Flyer, B. Fornberg, D. Hardin, T. Michaels, E. B. Saff

Why discretize?

- Model network and sensor deployment.
- Data: storing smooth manifold as a discrete configuration.
- PDE solvers, radial basis functions interpolation etc. need well-distributed nodes.
- > Additionally, the meshless methods often require non-uniform nodes.

A bad example

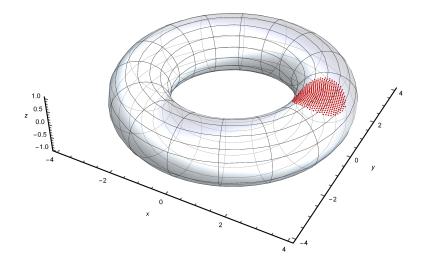
(Uniform) random points exhibit clustering!



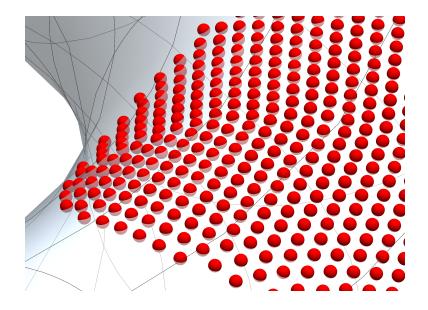
Delaunay triangulation of 500 uniformly random nodes in $[0, 1]^2$.

A good example

Figure: 500 points, s = 7, d = 2, $q(x) = |x - x_0|^2$, where $x_0 := (3, 0, 1)^T$



Zoomed view



How to improve?

- sample from a distribution/process with repulsive properties
- apply thinning (to a Monte Carlo Markov chain)

(still, neither of the above guarantees deterministic separation)

- Quasi-Monte Carlo methods
- Our suggestion: apply the gradient flow of a suitable functional to a suitable starting distribution

Weighted Riesz kernel

- > \mathcal{H}_d^A normalized restriction of the *d*-dimensional Hausdorff measure
- $\tilde{\omega_N} = {\mathbf{x}_1, \dots, \mathbf{x}_N} \subset A; \tilde{\omega}_N$ minimizers
- $E_s(\omega_N) := \sum_{\mathbf{x}\neq\mathbf{y}\in\omega_N} |\mathbf{x}-\mathbf{y}|^{-s}$, Riesz s-energy
- if $w(\cdot, \cdot)$ is \mathcal{H}_d^A -a.e. continuous on $A \times A$,

$$E_{s}(\omega_{N}; w) := \sum_{\substack{x \neq y \\ x, y \in \omega_{N}}} \frac{w(x, y)}{|x - y|^{s}};$$

Theorem (Borodachov - Hardin - Saff, '14)

s > d and $A \subset \mathbb{R}^p$ is d-rectifiable, compact, $\mathcal{H}_d(A) > 0$. Every (asymptotically) minimal sequence $\{\tilde{\omega}_N\}_{N \ge 2}$ converges weak*:

$$\frac{1}{N}\sum_{\boldsymbol{x}\in\tilde{\omega}_N}\delta_{\boldsymbol{x}}\overset{*}{\longrightarrow}\frac{1}{\mathcal{H}^{s,w}_d(A)}\cdot w^{-d/s}(\boldsymbol{x},\boldsymbol{x})\mathrm{d}\mathcal{H}^A_d\quad \text{ as }N\to\infty$$

 $(\mathcal{H}_d^{s,w}(A) \text{ is a normalizing constant})$ In particular, the asymptotics of the energy exists:

$$\lim_{N\to\infty}\frac{E_{s}(\tilde{\omega}_{N};w)}{N^{1+s/d}}=\frac{C_{s,d}}{\mathcal{H}_{d}^{s,w}(A)^{s/d}}.$$

External field

q : A → (∞, ∞] - lower semi-continuous function
For s > d, (s, d, q)-energy is

$$E_{s}(\omega_{N}; q) := \sum_{\substack{\mathbf{x} \neq \mathbf{y} \\ \mathbf{x}, \mathbf{y} \in \omega_{N}}} |\mathbf{x} - \mathbf{y}|^{-s} + N^{s/d} \sum_{\mathbf{x} \in \omega_{N}} q(\mathbf{x}).$$

• constant $M_{s,d} := (C_{s,d}(1 + s/d))^{-d/s}$

Theorem (Hardin - Saff - V, '16)

Take A, s as in the BHS-theorem. Every (asymptotically) minimal sequence $\{\tilde{\omega}_N\}_{N\geq 2}$ converges weak^{*}:

$$\frac{1}{N}\sum_{\mathbf{x}\in\tilde{\omega}_{N}}\delta_{\mathbf{x}}\overset{*}{\longrightarrow}\mathsf{M}_{s,d}\left(\mathsf{L}_{1}-q\right)_{+}^{d/s}\mathrm{d}\mathscr{H}_{d}^{\mathsf{A}}=:\mathrm{d}\mu_{q}\quad\text{ as }N\to\infty.$$

In particular, the asymptotics of the energy exists:

$$\lim_{N\to\infty}\frac{E_s(\tilde{\omega}_N;q)}{N^{1+s/d}}=\mathfrak{S}(q,A),$$

where

$$\mathfrak{S}(\boldsymbol{q},\boldsymbol{A}) := \int \frac{L_1 d + \boldsymbol{q}(\boldsymbol{x}) s}{d + s} \, \mathrm{d} \mu_{\boldsymbol{q}}(\boldsymbol{x}).$$

The $L_1 = L_1(q, A)$ is the (unique) constant such that $d\mu_q$ is a probability measure on A.

(Re)Producing a distribution

Given an upper semi-continuous $\rho : A \to [0, \infty)$ such that $\rho \, d\mathcal{H}_d^A$ - probability measure, define

$$w(\mathbf{x},\mathbf{y}) := (\rho(\mathbf{x})\rho(\mathbf{y}) + |\mathbf{x}-\mathbf{y}|)^{-s/2d}, \text{ and } q(\mathbf{x}) := -\left(\frac{\rho(\mathbf{x})}{M_{s,d}}\right)^{s/d}.$$

Any sequence $\{\tilde{\omega}_N\}_{N\geq 2}$ minimizing either

$$\mathsf{E}_{\mathsf{s}}(\omega_{\mathsf{N}}; \mathsf{w}) = \sum_{\substack{\mathsf{x} \neq \mathsf{y} \\ \mathsf{x}, \mathsf{y} \in \omega_{\mathsf{N}}}} \frac{\mathsf{w}(\mathsf{x}, \mathsf{y})}{|\mathsf{x} - \mathsf{y}|^{\mathsf{s}}}$$

or

$$E_{s}(\omega_{N};q) = \sum_{\substack{\mathbf{x}\neq\mathbf{y}\\\mathbf{x},\mathbf{y}\in\omega_{N}}} |\mathbf{x}-\mathbf{y}|^{-s} + N^{s/d} \sum_{\mathbf{x}\in\omega_{N}} q(\mathbf{x}).$$

VANDERBILT

converges to $\rho \, \mathrm{d} \mathcal{H}_d^A$, $N \to \infty$.

Kernel truncation

▶ Turns out, one may assume $w(\cdot, \cdot) = w_N(\cdot, \cdot)$ satisfies

$$w(\mathbf{x},\mathbf{y}) = \mathbf{0}, \quad \text{if} \quad |\mathbf{x}-\mathbf{y}| > r_N,$$

where

$$r_N \to 0$$
 so that $r_N N^{1/d} \to \infty$.

that is, outside an r_N -neighborhood of diag $(A \times A)$

- this does not change the limiting measure
- we call this modification the truncated Riesz kernel.
- applies to the $E(\omega_N; q)$ energy as well
- in practice, for a fixed range of N it suffices only to take into account several nearest neighbors

Family of energies

$$E_{s}(\omega_{N}; \boldsymbol{w}, \boldsymbol{q}) = \sum_{\substack{\boldsymbol{x}\neq\boldsymbol{y}\\ \boldsymbol{x}, \boldsymbol{y}\in\omega_{N}}} \frac{\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y})}{|\boldsymbol{x}-\boldsymbol{y}|^{s}} + N^{s/d} \sum_{\boldsymbol{x}\in\omega_{N}} \boldsymbol{q}(\boldsymbol{x}).$$

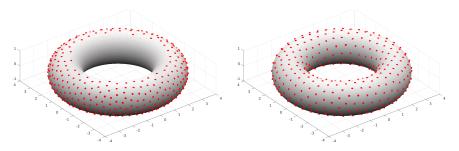
- flexibility in choosing the functional
- the cost of evaluation of the density defines the costs of w and q
- local forces in w vs global in q

Short-scale properties of minimizers

- Optimal order of minimal pairwise distances, $N^{-1/d}$, for s > d.
- Under mild smoothness assumptions minimizers have the optimal covering radius of order N^{-1/d} on any sublevel set A(u) for all u < L₁.
- For d ≥ 2, and s > d, the value of constant C_{s,d} is known only numerically. Still, the distribution is stable under small perturbations of the value of C_{s,d}.

Restriction s > d is important

Let A – torus, dim A = 2,



are 500-point approximate minimizers. Left: s = 0.5; right: s = 4. This is an artifact of using the ambient, not geodesic, distance.

Gradient dynamics and its initialization

- Picking a random starting position slows down the optimization.
- The hypersingular kernel is short-ranged; let us try a locally suitable starting set, then apply minimization.
- For Monte Carlo methods piecewise distribution generation: stratification.
- Since we prohibit clustering, let's use quasi-Monte Carlo on individual pieces.

Gradient flow

- **x**^(t)_{j(i,k)} nearest neighbors to **x**^(t)_i, 1 ≤ k ≤ K; Δ (**x**^(t)_i; ω^(t)_N) distance to the nearest neighbor
- Perform T iterations, moving in the direction of vector $g_i^{(t)}$:

$$\boldsymbol{g}_{i}^{(t)} = -\nabla_{i}\boldsymbol{E}_{s}\left(\left\{\boldsymbol{x}_{j(i,k)}^{(t)}\right\}; \boldsymbol{w}\right) \quad 1 \leq i \leq N.$$

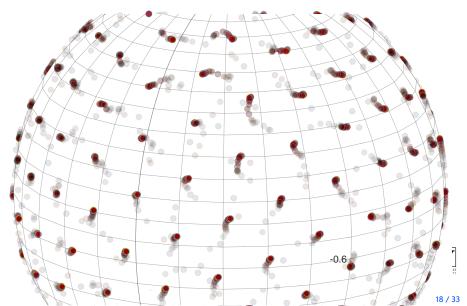
► C > 0, constant

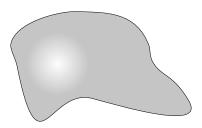
$$\mathbf{x}_{i}^{(t+1)} = \begin{cases} \mathbf{x}_{i}^{(t)} + \frac{1}{t+C} \cdot \Delta\left(\mathbf{x}_{i}^{(t)}; \ \omega_{N}^{(t)}\right) \cdot \frac{\mathbf{g}_{i}^{(t)}}{\|\mathbf{g}_{i}^{(t)}\|} & \text{if this sum is inside } A; \\ \mathbf{x}_{i}^{(t)}, & \text{otherwise.} \end{cases}$$

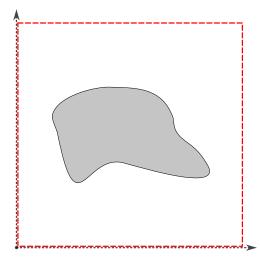
➤ ≈ truncated Langevin dynamics ⇒ considered in the math.phys. community, Chafaï et al, Duerinckx, Serfaty, etc.

Dynamics illustration

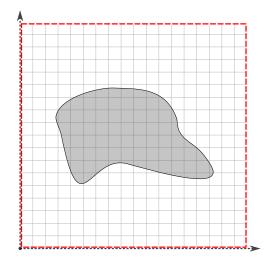
200 spherical points



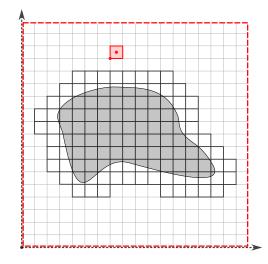




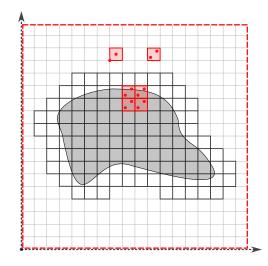
> partition the domain using a uniform (or adaptive) grid



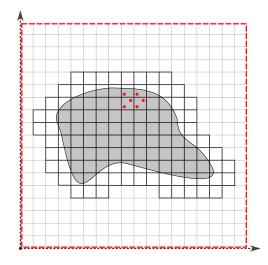
detect support; use only the cells close to it



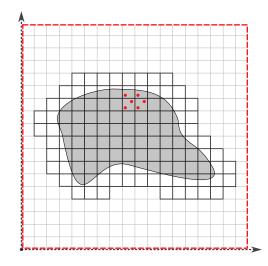
place rescaled/translated/otherwise adapted pieces in each cell



make sure no points are outside the support

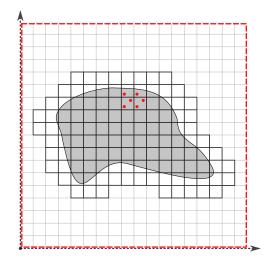


apply the gradient flow, weighted with the desired density



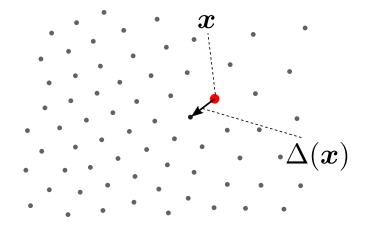
▶ fill the sparser parts of the distribution by saturation

('greedy' procedure, conceptually similar to bubble packing by Shimada)



Modified question

Distance from a node to the nearest neighbor has to be approximately equal to a given function of its position: $\Delta(\mathbf{x}) \approx \rho(\mathbf{x})$



We call ρ the *radial density*. Note: it is Lipschitz-1.

Modified algorithm

. . .

. . .

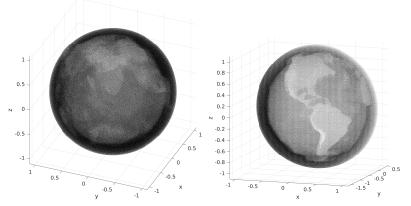
> place rescaled/translated/otherwise adapted pieces in each cell

- 1. tabulate separation for a pre-determined node sequence (Riesz minimizers or ILs)
- 2. use appropriate number of nodes, according to the desired separation
- 3. transition between the multiplicative weight and radial density is governed by $w \simeq \Delta^s$, $N \to \infty$

VANDERBILT

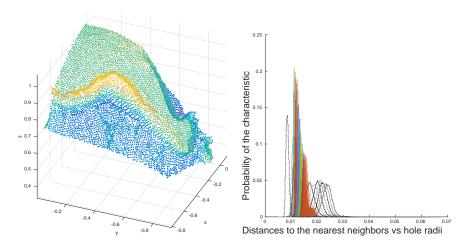
Earth surface

Goal: regularity on complex surfaces for the uniform density.
An atmospheric layer with faithful surface recovery:



≈ 1.35M nodes, generated in ≈ 3 minutes using ETOPO1 surface data and ray-tracing inclusion algorithm. The \mathcal{L}_n lattice parameters $\alpha_1 = \sqrt{2}, \alpha_2 = (\sqrt{5} - 1)/\sqrt{2}.$

Earth surface: Andes

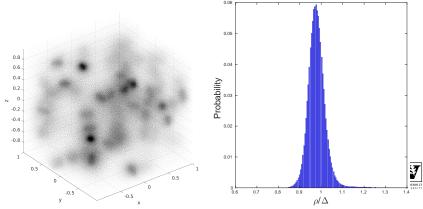


Point cloud

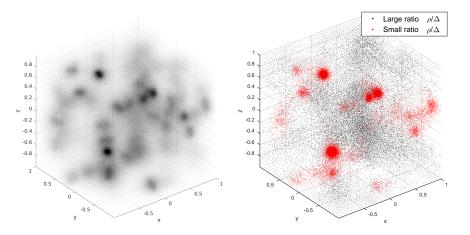
► Random 100 points \mathcal{P}_{100} inside $[-1, 1]^3$. Consider the radial density: $\rho(\mathbf{x}) = (\Delta(\mathbf{x}; \mathcal{P}_{100}) + \Delta^2(\mathbf{x}; \mathcal{P}_{100})) / 20,$

where Δ^2 for the distance to the 2-nd nearest neighbor.

Goal: density recovery. Output: Left: 577,321 nodes; 200 interations of flow stepping in ≈ 12 minutes . Right: ratio of target/actual densities.



Point cloud: error location

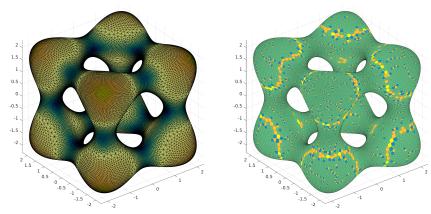


Surface Voronoi

Chmutov-Banchoff-type surface:

 $x^{2}(x^{2}-5) + y^{2}(y^{2}-5) + z^{2}(z^{2}-5) + 11 = 0$

► 40K points distributed according to the absolute value of the Gaussian curvature. Left: color-coded Gaussian curvature, blue/orange is lower/higher. Right: surface Voronoi diagram.



Candidates for Quasi-Monte Carlo initialization

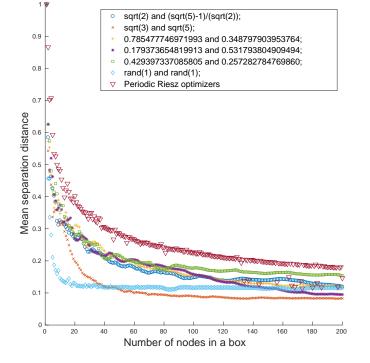
irrational lattices (easy to generate, scalable)
Pick α₁,..., α_{d-1} linearly independent over Q, fix O < δ < 1

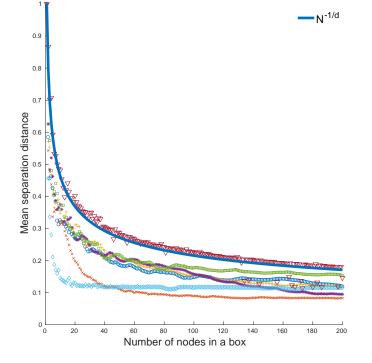
$$\mathcal{L}_{\mathbf{n}} := \left\{ \left(\left\{ \delta + \frac{i}{n} \right\}, \{i\alpha_1\}, \{i\alpha_2\}, \dots, \{i\alpha_{d-1}\} \right) \right\}_{i=1}^n$$

 $\{x\} \equiv x \mod 1.$

- 1. \mathcal{L}_n weakly converge to the uniform distribution
- 2. pointwise separation depends on the "irrationality properties" of $\alpha_1, \ldots, \alpha_{d-1}$, apparently on the continued fraction approximation
- 3. *Korobov point sets* for the Q-MC community; *Kronecker sequences* for number theorists; *IL* is the low-discrepancy term.
- periodic Riesz minimizers (optimal filling)

Separation of ILs: a curiosity





Implementation

- Matlab prototype; uses the default knn.
 - https://github.com/OVlasiuk/3dRBFnodes
 - https://github.com/OVlasiuk/BRieszk
- Efficient for small to medium scales.

Conclusion

- Riesz energy-based functionals for construction of sets with a predefined density, volumetric and related
- suitable for meshless methods
- parallelizable
- reliably attains optimal separation
- practically suitable for tessellating (2d surfaces)
- (almost) dimension-agnostic
- allows modest (in terms of Wasserstein distance) distribution updates
- on large scales the singularity can cause precision loss, mitigated by smoothing
- relies on finding nearest neighbors

Thank you!

- D. P. Hardin, E. B. Saff and O. V. Generating point configurations via hypersingular Riesz energy with an external field, SIAM J. Math. Anal., 49(1), 646-673, 2017
- S. V. Borodachov, D. P. Hardin, and E. B. Saff. Low Complexity Methods For Discretizing Manifolds Via Riesz Energy Minimization. Found. Comput. Math., 14, 2014
- K. Shimada, D. C. Gossard, Bubble mesh, ACM SMA '95 (pp. 409-419). NY: ACM Press.
- C. Beltrán, J. Marzo, and J. Ortega-Cerdà. Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres, J. Complexity, 37, 76-109, 2016
- N. Flyer, B. Fornberg, T. Michaels, and O. V., Fast high-dimensional node generation with variable density, submitted.