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Why discretize?

I Model network and sensor deployment.
I Data: storing smooth manifold as a discrete configuration.
I PDE solvers, radial basis functions interpolation etc. need

well-distributed nodes.
I Additionally, the meshless methods often require non-uniform nodes.
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A bad example
I (Uniform) random points exhibit clustering!

Delaunay triangulation of 500 uniformly random nodes in [0, 1]2 .
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A good example

Figure: 500 points, s � 7, d � 2, q(x) � |x − x0 |2, where x0 :� (3,0, 1)T
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Zoomed view



How to improve?

I sample from a distribution/process with repulsive properties
I apply thinning (to a Monte Carlo Markov chain)

(still, neither of the above guarantees deterministic separation)

I Quasi-Monte Carlo methods
I Our suggestion: apply the gradient flow of a suitable functional to a

suitable starting distribution
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Weighted Riesz kernel
I HA

d – normalized restriction of the d-dimensional Hausdorff measure
I ωN � {x1 , . . . , xN} ⊂ A; ω̃N — minimizers
I Es(ωN) :�

∑
x,y∈ωN

|x − y |−s, Riesz s-energy
I if w(·, ·) is HA

d -a.e. continuous on A × A,

Es(ωN;w) :� ∑
x,y

x,y∈ωN

w(x,y)
|x−y |s ;

Theorem (Borodachov - Hardin - Saff, ’14)
s > d and A ⊂ Rp is d-rectifiable, compact, Hd(A) > 0.
Every (asymptotically) minimal sequence {ω̃N}N≥2 converges weak∗:

1
N

∑
x∈ω̃N

δx
∗−→ 1

H
s,w
d (A)

· w−d/s(x, x)dHA
d as N→∞.

(Hs,w
d (A) is a normalizing constant) In particular, the asymptotics of the energy

exists:

lim
N→∞

Es(ω̃N;w)
N1+s/d �

Cs,d

H
s,w
d (A)s/d

.
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External field

I q : A→ (∞,∞] – lower semi-continuous function
I For s > d, (s, d, q)-energy is

Es(ωN; q) :�
∑
x,y

x,y∈ωN

|x − y |−s
+ Ns/d

∑
x∈ωN

q(x).

I constant Ms,d :� (Cs,d(1 + s/d))−d/s
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Theorem (Hardin - Saff - V, ’16)
Take A, s as in the BHS-theorem. Every (asymptotically) minimal sequence
{ω̃N}N≥2 converges weak∗:

1
N

∑
x∈ω̃N

δx
∗−→ Ms,d (L1 − q)d/s+ dHA

d �: dµq as N→∞.

In particular, the asymptotics of the energy exists:

lim
N→∞

Es(ω̃N; q)
N1+s/d �S(q, A),

where

S(q, A) :�
∫

L1d + q(x)s
d + s

dµq(x).

The L1 � L1(q, A) is the (unique) constant such that dµq is a probability
measure on A.
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(Re)Producing a distribution
Given an upper semi-continuous ρ : A→ [0,∞) such that ρ dHA

d –
probability measure, define

w(x, y) :� (ρ(x)ρ(y) + |x − y |)−s/2d , and q(x) :� −
(
ρ(x)
Ms,d

)s/d
.

Any sequence {ω̃N}N≥2 minimizing either

Es(ωN;w) �
∑
x,y

x,y∈ωN

w(x, y)
|x − y |s

or
Es(ωN; q) �

∑
x,y

x,y∈ωN

|x − y |−s
+ Ns/d

∑
x∈ωN

q(x).

converges to ρ dHA
d , N→∞.
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Kernel truncation

I Turns out, one may assume w(·, ·) � wN(·, ·) satisfies

w(x, y) � 0, if |x − y | > rN ,

where
rN → 0 so that rNN1/d →∞.

that is, outside an rN-neighborhood of diag(A × A)
I this does not change the limiting measure
I we call this modification the truncated Riesz kernel.
I applies to the E(ωN; q) energy as well
I in practice, for a fixed range of N it suffices only to take into account

several nearest neighbors
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Family of energies

Es(ωN;w, q) �
∑
x,y

x,y∈ωN

w(x, y)
|x − y |s

+ Ns/d
∑

x∈ωN

q(x).

I flexibility in choosing the functional
I the cost of evaluation of the density defines the costs of w and q
I local forces in w vs global in q

13 / 33



Short-scale properties of minimizers

I Optimal order of minimal pairwise distances, N−1/d, for s > d.
I Under mild smoothness assumptions minimizers have the optimal

covering radius of order N−1/d on any sublevel set A(u) for all u < L1.
I For d ≥ 2, and s > d, the value of constant Cs,d is known only

numerically. Still, the distribution is stable under small perturbations
of the value of Cs,d.
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Restriction s > d is important

Let A — torus, dimA � 2,

are 500-point approximate minimizers. Left: s � 0.5; right: s � 4.
This is an artifact of using the ambient, not geodesic, distance.
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Gradient dynamics and its initialization

I Picking a random starting position slows down the optimization.
I The hypersingular kernel is short-ranged; let us try a locally suitable

starting set, then apply minimization.
I For Monte Carlo methods piecewise distribution generation:

stratification.
I Since we prohibit clustering, let’s use quasi-Monte Carlo on individual

pieces.
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Gradient flow

I x(t)j(i,k) – nearest neighbors to x(t)i , 1 ≤ k ≤ K; ∆
(
x(t)i ; ω(t)N

)
– distance to

the nearest neighbor

I Perform T iterations, moving in the direction of vector g(t)i :

g(t)i � −∇iEs

({
x(t)j(i,k)

}
;w

)
1 ≤ i ≤ N.

I C > 0, constant

x(t+1)
i �


x(t)i +

1
t + C

· ∆
(
x(t)i ; ω(t)N

)
·

g(t)i

‖g(t)i ‖
if this sum is inside A;

x(t)i , otherwise.

I ≈ truncated Langevin dynamics �⇒ considered in the math.phys.
community, Chafaï et al, Duerinckx, Serfaty, etc.
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Dynamics illustration
200 spherical points
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I partition the domain using a uniform (or adaptive) grid

19 / 33



Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I detect support; use only the cells close to it
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I place rescaled/translated/otherwise adapted pieces in each cell
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

Imake sure no points are outside the support
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I apply the gradient flow, weighted with the desired density
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I fill the sparser parts of the distribution by saturation
( ’greedy’ procedure, conceptually similar to bubble packing by Shimada)
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Modified question
Distance from a node to the nearest neighbor has to be approximately
equal to a given function of its position: ∆(x) ≈ ρ(x)

We call ρ the radial density. Note: it is Lipschitz-1.
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Modified algorithm

. . .
I place rescaled/translated/otherwise adapted pieces in each cell

1. tabulate separation for a pre-determined node sequence (Riesz
minimizers or ILs)

2. use appropriate number of nodes, according to the desired separation
3. transition between the multiplicative weight and radial density is

governed by w � ∆s , N→∞
. . .
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Earth surface
I Goal: regularity on complex surfaces for the uniform density.

An atmospheric layer with faithful surface recovery:

≈ 1.35M nodes, generated in ≈ 3 minutes using ETOPO1 surface data
and ray-tracing inclusion algorithm. The Ln lattice parameters
α1 �

√
2, α2 � (

√
5 − 1)/

√
2.
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Earth surface: Andes
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Point cloud
I Random 100 points P100 inside [−1, 1]3. Consider the radial density:

ρ(x) �
(
∆(x;P100) + ∆2(x;P100)

)
/20,

where ∆2 for the distance to the 2-nd nearest neighbor.
I Goal: density recovery. Output: Left: 577,321 nodes; 200 interations

of flow stepping in ≈ 12 minutes . Right: ratio of target/actual
densities.
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Point cloud: error location
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Surface Voronoi
I Chmutov-Banchoff-type surface:
x2(x2 − 5) + y2(y2 − 5) + z2(z2 − 5) + 11 � 0
I 40K points distributed according to the absolute value of the Gaussian
curvature. Left: color-coded Gaussian curvature, blue/orange is
lower/higher. Right: surface Voronoi diagram.
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Candidates for Quasi-Monte Carlo initialization

I irrational lattices (easy to generate, scalable)
Pick α1 , . . . , αd−1 linearly independent over Q, fix 0 < δ < 1

Ln :�

{ ({
δ +

i
n

}
, {iα1} , {iα2}, . . . , {iαd−1}

) }n

i�1

{x} ≡ x mod 1.

1. Ln weakly converge to the uniform distribution
2. pointwise separation depends on the “irrationality properties” of
α1 , . . . , αd−1, apparently on the continued fraction approximation

3. Korobov point sets for the Q-MC community; Kronecker sequences for
number theorists; IL is the low-discrepancy term.

I periodic Riesz minimizers (optimal filling)
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Separation of ILs: a curiosity
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Implementation

I Matlab prototype; uses the default knn.
I https://github.com/OVlasiuk/3dRBFnodes
I https://github.com/OVlasiuk/BRieszk

I Efficient for small to medium scales.

31 / 33



Conclusion

I Riesz energy-based functionals for construction of sets with a
predefined density, volumetric and related

I suitable for meshless methods
I parallelizable
I reliably attains optimal separation
I practically suitable for tessellating (2d surfaces)
I (almost) dimension-agnostic
I allows modest (in terms of Wasserstein distance) distribution updates

I on large scales the singularity can cause precision loss, mitigated by
smoothing

I relies on finding nearest neighbors
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