
High-dimensional node generation with variable
density

Alex Vlasiuk

Fast Algorithms for
Generating Static and Dynamically Changing Point Configurations

ICERM
March 2018



Joint work with
N. Flyer, B. Fornberg, D. Hardin, T. Michaels, E. B. Saff



Why discretize?

I Model network and sensor deployment.
I Data: storing smooth manifold as a discrete configuration.
I PDE solvers, radial basis functions interpolation etc. need

well-distributed nodes.
I Additionally, the meshless methods often require non-uniform nodes.
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A bad example
I (Uniform) random points exhibit clustering!

Delaunay triangulation of 500 uniformly random nodes in [0, 1]2 .
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A good example

Figure: 500 points, s � 7, d � 2, q(x) � |x − x0 |2, where x0 :� (3,0, 1)T
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Zoomed view



How to improve?

I sample from a distribution/process with repulsive properties
I apply thinning (to a Monte Carlo Markov chain)

(still, neither of the above guarantees deterministic separation)

I Quasi-Monte Carlo methods
I Our suggestion: apply the gradient flow of a suitable functional to a

suitable starting distribution
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Weighted Riesz kernel
I HA

d – normalized restriction of the d-dimensional Hausdorff measure
I ωN � {x1 , . . . , xN} ⊂ A; ω̃N — minimizers
I Es(ωN) :�

∑
x,y∈ωN

|x − y |−s, Riesz s-energy
I if w(·, ·) is HA

d -a.e. continuous on A × A,

Es(ωN;w) :� ∑
x,y

x,y∈ωN

w(x,y)
|x−y |s ;

Theorem (Borodachov - Hardin - Saff, ’14)
s > d and A ⊂ Rp is d-rectifiable, compact, Hd(A) > 0.
Every (asymptotically) minimal sequence {ω̃N}N≥2 converges weak∗:

1
N

∑
x∈ω̃N

δx
∗−→ 1

H
s,w
d (A)

· w−d/s(x, x)dHA
d as N→∞.

(Hs,w
d (A) is a normalizing constant) In particular, the asymptotics of the energy

exists:

lim
N→∞

Es(ω̃N;w)
N1+s/d �

Cs,d

H
s,w
d (A)s/d

.
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External field

I q : A→ (∞,∞] – lower semi-continuous function
I For s > d, (s, d, q)-energy is

Es(ωN; q) :�
∑
x,y

x,y∈ωN

|x − y |−s
+ Ns/d

∑
x∈ωN

q(x).

I constant Ms,d :� (Cs,d(1 + s/d))−d/s
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Theorem (Hardin - Saff - V, ’16)
Take A, s as in the BHS-theorem. Every (asymptotically) minimal sequence
{ω̃N}N≥2 converges weak∗:

1
N

∑
x∈ω̃N

δx
∗−→ Ms,d (L1 − q)d/s+ dHA

d �: dµq as N→∞.

In particular, the asymptotics of the energy exists:

lim
N→∞

Es(ω̃N; q)
N1+s/d �S(q, A),

where

S(q, A) :�
∫

L1d + q(x)s
d + s

dµq(x).

The L1 � L1(q, A) is the (unique) constant such that dµq is a probability
measure on A.
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(Re)Producing a distribution
Given an upper semi-continuous ρ : A→ [0,∞) such that ρ dHA

d –
probability measure, define

w(x, y) :� (ρ(x)ρ(y) + |x − y |)−s/2d , and q(x) :� −
(
ρ(x)
Ms,d

)s/d
.

Any sequence {ω̃N}N≥2 minimizing either

Es(ωN;w) �
∑
x,y

x,y∈ωN

w(x, y)
|x − y |s

or
Es(ωN; q) �

∑
x,y

x,y∈ωN

|x − y |−s
+ Ns/d

∑
x∈ωN

q(x).

converges to ρ dHA
d , N→∞.
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Kernel truncation

I Turns out, one may assume w(·, ·) � wN(·, ·) satisfies

w(x, y) � 0, if |x − y | > rN ,

where
rN → 0 so that rNN1/d →∞.

that is, outside an rN-neighborhood of diag(A × A)
I this does not change the limiting measure
I we call this modification the truncated Riesz kernel.
I applies to the E(ωN; q) energy as well
I in practice, for a fixed range of N it suffices only to take into account

several nearest neighbors
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Family of energies

Es(ωN;w, q) �
∑
x,y

x,y∈ωN

w(x, y)
|x − y |s

+ Ns/d
∑

x∈ωN

q(x).

I flexibility in choosing the functional
I the cost of evaluation of the density defines the costs of w and q
I local forces in w vs global in q

13 / 33



Short-scale properties of minimizers

I Optimal order of minimal pairwise distances, N−1/d, for s > d.
I Under mild smoothness assumptions minimizers have the optimal

covering radius of order N−1/d on any sublevel set A(u) for all u < L1.
I For d ≥ 2, and s > d, the value of constant Cs,d is known only

numerically. Still, the distribution is stable under small perturbations
of the value of Cs,d.
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Restriction s > d is important

Let A — torus, dimA � 2,

are 500-point approximate minimizers. Left: s � 0.5; right: s � 4.
This is an artifact of using the ambient, not geodesic, distance.
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Gradient dynamics and its initialization

I Picking a random starting position slows down the optimization.
I The hypersingular kernel is short-ranged; let us try a locally suitable

starting set, then apply minimization.
I For Monte Carlo methods piecewise distribution generation:

stratification.
I Since we prohibit clustering, let’s use quasi-Monte Carlo on individual

pieces.
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Gradient flow

I x(t)j(i,k) – nearest neighbors to x(t)i , 1 ≤ k ≤ K; ∆
(
x(t)i ; ω(t)N

)
– distance to

the nearest neighbor

I Perform T iterations, moving in the direction of vector g(t)i :

g(t)i � −∇iEs

({
x(t)j(i,k)

}
;w

)
1 ≤ i ≤ N.

I C > 0, constant

x(t+1)
i �


x(t)i +

1
t + C

· ∆
(
x(t)i ; ω(t)N

)
·

g(t)i

‖g(t)i ‖
if this sum is inside A;

x(t)i , otherwise.

I ≈ truncated Langevin dynamics �⇒ considered in the math.phys.
community, Chafaï et al, Duerinckx, Serfaty, etc.
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Dynamics illustration
200 spherical points
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I partition the domain using a uniform (or adaptive) grid
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I detect support; use only the cells close to it
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I place rescaled/translated/otherwise adapted pieces in each cell
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

Imake sure no points are outside the support
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I apply the gradient flow, weighted with the desired density
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Algorithm (Flyer - Fornberg - Michaels - V, ’17)

I fill the sparser parts of the distribution by saturation
( ’greedy’ procedure, conceptually similar to bubble packing by Shimada)
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Modified question
Distance from a node to the nearest neighbor has to be approximately
equal to a given function of its position: ∆(x) ≈ ρ(x)

We call ρ the radial density. Note: it is Lipschitz-1.

20 / 33



Modified algorithm

. . .
I place rescaled/translated/otherwise adapted pieces in each cell

1. tabulate separation for a pre-determined node sequence (Riesz
minimizers or ILs)

2. use appropriate number of nodes, according to the desired separation
3. transition between the multiplicative weight and radial density is

governed by w � ∆s , N→∞
. . .
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Earth surface
I Goal: regularity on complex surfaces for the uniform density.

An atmospheric layer with faithful surface recovery:

≈ 1.35M nodes, generated in ≈ 3 minutes using ETOPO1 surface data
and ray-tracing inclusion algorithm. The Ln lattice parameters
α1 �

√
2, α2 � (

√
5 − 1)/

√
2.

22 / 33



Earth surface: Andes
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Point cloud
I Random 100 points P100 inside [−1, 1]3. Consider the radial density:

ρ(x) �
(
∆(x;P100) + ∆2(x;P100)

)
/20,

where ∆2 for the distance to the 2-nd nearest neighbor.
I Goal: density recovery. Output: Left: 577,321 nodes; 200 interations

of flow stepping in ≈ 12 minutes . Right: ratio of target/actual
densities.
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Point cloud: error location
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Surface Voronoi
I Chmutov-Banchoff-type surface:
x2(x2 − 5) + y2(y2 − 5) + z2(z2 − 5) + 11 � 0
I 40K points distributed according to the absolute value of the Gaussian
curvature. Left: color-coded Gaussian curvature, blue/orange is
lower/higher. Right: surface Voronoi diagram.
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Candidates for Quasi-Monte Carlo initialization

I irrational lattices (easy to generate, scalable)
Pick α1 , . . . , αd−1 linearly independent over Q, fix 0 < δ < 1

Ln :�

{ ({
δ +

i
n

}
, {iα1} , {iα2}, . . . , {iαd−1}

) }n

i�1

{x} ≡ x mod 1.

1. Ln weakly converge to the uniform distribution
2. pointwise separation depends on the “irrationality properties” of
α1 , . . . , αd−1, apparently on the continued fraction approximation

3. Korobov point sets for the Q-MC community; Kronecker sequences for
number theorists; IL is the low-discrepancy term.

I periodic Riesz minimizers (optimal filling)
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Separation of ILs: a curiosity
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Implementation

I Matlab prototype; uses the default knn.
I https://github.com/OVlasiuk/3dRBFnodes
I https://github.com/OVlasiuk/BRieszk

I Efficient for small to medium scales.
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Conclusion

I Riesz energy-based functionals for construction of sets with a
predefined density, volumetric and related

I suitable for meshless methods
I parallelizable
I reliably attains optimal separation
I practically suitable for tessellating (2d surfaces)
I (almost) dimension-agnostic
I allows modest (in terms of Wasserstein distance) distribution updates

I on large scales the singularity can cause precision loss, mitigated by
smoothing

I relies on finding nearest neighbors
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